ПРЕДПРИЯТИЕ МАКСАЭРО

- Производство воздуховодов и систем вентиляции
- Клапаны противопожарные
- Клапаны дымоудаления
- Вентиляторы общепром, дымоудаления, крышные

220056, г. Минск, ул. Стариновская, 15

Тел./факс: +375 17 244-67-44, 258-67-51, 347-73-56, 252-54-27

Velcom: +375 29 603-88-99 E-mail: **olegaero**@yandex.by

www.maxaero.by

Центробежные насосы Saer IR

Содержание

ОБЩИЕ ПОЛОЖЕНИЯ	3
ХАРАКТЕРИСТИКИ	4
ТРАНСПОРТИРОВКА И ПРОМЕЖУТОЧНОЕ ХРАНЕНИЕ	5
ПОЛУЧЕНИЕ НАСОСА	5
ПЕРЕМЕЩЕНИЕ	5
ХРАНЕНИЕ	5
ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ И ЭКСПЛУАТАЦИЯ	6
ОПИСАНИЕ МАШИНЫ	6
ПРИМЕНЕНИЕ	6
УСЛОВИЯ ЭКСПЛУАТАЦИИ	7
НЕДОПУСТИМОЕ ИСПОЛЬЗОВАНИЕ	7
УСТАНОВКА	7
ПРЕДВАРИТЕЛЬНЫЕ ПРОВЕРКИ	8
РАСПОЛОЖЕНИЕ УСТАНОВКИ	8
МЕСТО УСТАНОВКИ	8
ПОДСОЕДИНЕНИЕ ТРУБОПРОВОДОВ	9
ПОДСОЕДИНЕНИЕ К ЭЛЕКТРИЧЕСКОЙ СЕТИ	10
ВВОД В ЭКСПЛУАТАЦИЮ, РАБОТА И ОСТАНОВКА	11
ЗАПОЛНЕНИЕ И ЗАЛИВКА НАСОСА ПЕРЕД ПУСКОМ	11
ПРОВЕРКА НАПРАВЛЕНИЯ ВРАЩЕНИЯ	12
ввод в эксплуатацию	12
ОСТАНОВКА НАСОСА / ЭЛЕКТРОНАСОСА	12
КОНСЕРВАЦИЯ	12
ТЕХОБСЛУЖИВАНИЕ	12
ДЕМОНТАЖ НАСОСА	13
ВЫВОД ИЗ ЭКСПЛУАТАЦИИ И УТИЛИЗАЦИЯ	13
НЕИСПРАВНОСТИ: ПРИЧИНЫ И СПОСОБЫ УСТРАНЕНИЯ	14
ЗАПЧАСТИ	15
ИНФОРМАЦИЯ ПО ЭФФЕКТИВНОСТИ	15
СВИДЕТЕЛЬСТВО О СООТВЕТСТВИИ ТРЕБОВАНИЯМ	16
LADAUTINŬULIE ACUODING	16

общие положения

Перед выполнением какой-либо операции необходимо внимательно прочитать настоящее руководство. Производитель отклоняет любуюответственность за последствия, связанныес несоблюдением приведенныхинструкцийилисненадлежащей эксплуатацией изделия. Инструкции и предписания, приведенные в настоящем руководстве, относятся к стандартному исполнению. Для всех иных исполнений и по любым ситуациям, не рассмотренным в руководстве, следует обращаться в службу техпомощи.

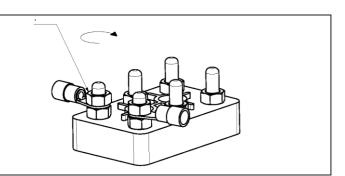
Обозначения на шильдике

оноблочное	исполнение		TYPE	Модель насоса
			YEAR	Год выпуска
			N°	Серийный номер
SAFD®	GUASTALLA (RE) ITALY TEL. +390522 830941 www.saerelettropompe.com	COICCE	Q	Диапазон расхода
ELETTROPOMPE		MADE IN ITALY	Н	Диапазон напора
Туре Тип	N°	Year Год	Pn	Максимальное рабочее давление
Q=m³/h	PN (bar) 20°C	Tmax 4 =°C		
H=m	Hmin=m	Hmax=m	T_{max}	Максимальная температура жидкости
ηೄmax=	MEI >			
Motor Motop ~	Hz kW	HP	H_{\min}	Минимальный напор
V	η _{100%} = IE	min ⁻¹	H _{max}	Высота закрытой подачи
A	T _{max.amb} .	CI IP S	η _{Pmax}	ГидравликаКПД
			MEI	Индекс MEI
			Motor	Количество фаз и частота
			kW HP	Необходимая мощность кВт (макс. и в рабочей точке)
				Напряжение
			IE	Класс энергоэффективности двигателя
			min ⁻¹	Скорость
			A	Ток
				Максимальная температура окружающейсреды
			T _{max.am}	
			b	
			Cl	Класс изоляции
			IP	Класс защиты
			S	Режим

ХАРАКТЕРИСТИКИ

Таблица допустимых усилий на фланцы для агрегатов в стандартном исполнении

	НАГНЕТАНИЕ							
DNI	Прочность (N)			Моменты (Nm)				
DN	Fy	Fz	Fx	∑F	Му	Mz	Mx	∑M
32	300	370	320	580	270	300	390	560
40	350	440	390	690	320	370	460	670
50	480	580	530	910	350	410	490	720
65	600	740	650	1160	390	420	530	770
80	720	880	790	1390	410	460	560	830
100	950	1180	1050	1840	440	510	620	910
125	1120	1390	1250	2170	530	670	740	1070
150	1420	1750	1580	2750	620	720	880	1280
200	1890	2350	2100	3660	810	930	1140	1680
250	2370	2930	2610	4570	1110	1280	1560	2300
300	2820	3500	3140	5480	1510	1740	2120	3120


	ВСАСЫВАНИЕ							
	Г	Трочно	сть (N)		Моменты (Nm)			1)
DN		1					1	
	Fy	Fz	Fx	∑F	Му	Mz	Mx	∑M
25	425	350	375	650	300	350	450	650
32	525	425	450	825	375	425	550	800
40	625	500	550	975	450	525	650	950
50	825	675	750	1300	500	575	700	1025
65	1050	850	925	1650	550	600	750	1100
80	1250	1025	1125	1975	575	650	800	1175
100	1675	1350	1500	2625	625	725	875	1300
125	1975	1600	1775	3100	750	950	1050	1525
150	2500	2025	2250	3925	875	1025	1250	1825
200	3350	2700	3000	5225	1150	1325	1625	2400
250	4175	3375	3725	6525	1575	1825	2225	3275
300	5000	4025	4475	7825	2150	2475	3025	4450

Уровень шума при обычных условиях эксплуатации (без кавитации).

Двигатель kW	Уровень шума (L₂₄) – 1m dBA		Уровень звуковой мощности (L _{wa}) – 1m dBA	
KVV	1450 1/min	2900 1/min	1450 1/min	2900 1/min
≤ 2,2	≤ 65	≤ 70	≤ 75	≤ 80
3 ÷ 7,5	≤ 70	≤ 80	≤ 80	≤ 88
9,2 ÷ 18,5	≤ 75	≤ 80	≤ 85	≤ 88
22 ÷ 45	≤ 85	≤ 85	≤ 95	≤ 95
55 ÷ 90	≤ 90	≤ 90	≤ 100	≤ 100

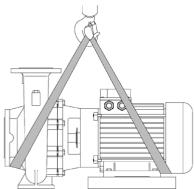
Степень затягивания для подсоединения в клеммной коробке

Шпилька	Степень затягивания (Nm)
M4	2 ÷ 4
M5	3 ÷ 5
M6	6 ÷ 8
M8	15 ÷ 22
M10	25 ÷ 40
M12	45 ÷ 60
M14	70 ÷ 95

Степень затягивания соединительных винтов корпуса насоса

Болт	Степень затягивания(Nm)	
M6	6	
M8	10	0 0
M10	20	
M12	25	
M16	60	

ТРАНСПОРТИРОВКА И ПРОМЕЖУТОЧНОЕ ХРАНЕНИЕ


ПОЛУЧЕНИЕ НАСОСА

При получении насоса необходимо проверить следующее:

- Отсутствие повреждений в процессе транспортировки. При наличии повреждений, даже только внешних, необходимовнести примечание в сопроводительные документы и известить транспортное агентство;
- Соответствие комплекта поставки заказу: в случае недостачи необходимо внести примечание в сопроводительные документы и известить транспортное агентство.

ПЕРЕМЕЩЕНИЕ

- Перемещать насосы/электронасосы следует надлежащими подъемными средствами. Возможные удары или падения могут повредить машины, даже если внешние повреждения не будут видны, илипричинить физический и материальный ущерб.
- Необходимо использовать тросы, ремни или цепи, пригодные для данной цели; вес узла или отдельных его компонентов (насос, двигатель, муфта, основание и др.) указан на чертежах и в направляемой технической документации. При необходимости обращаться в службу техпомощи.
- Убедиться, что подъемные приспособления имеют надлежащую грузоподъемность и находятся в хорошем состоянии.

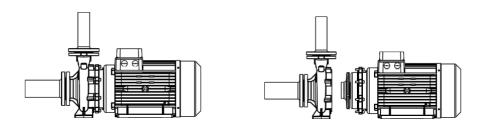
- Не стоять и не проходить под грузом в процессе его перемещения.
- Соблюдать общие и местные действующие правила техники безопасности.
- Насос поставляется в защитной упаковке, которая снимается только непосредственно перед установкой.
- Необходимо принять надлежащие меры для предотвращения загрязнения материалов и машин, чтобы не ухудшилось качество воды, которая будет с ними контактировать.

ХРАНЕНИЕ

- При хранении машину следует защитить от атмосферных воздействий, поместив ее в сухое место, в котором нет пыли, морозов и вибраций.
- Температура хранения: мин. 0°С макс. 50°С
- Открытые металлические поверхности (фланцы) защитить от коррозии надлежащими средствами

Если предполагается хранить насос/электронасос в течение длительного периода (более месяца), следующие шаги следует выполнять ежемесячно:

- проверить нормальное состояние насоса / электронасоса в целом и, в особенности, состояние неокрашенных поверхностей;
- с помощью специальных инструментов проверить свободное вращение вала;


- раз в месяц вручную поворачивать вал, чтобы поддерживать подшипники в состоянии защиты смазкой.
- При возникновении неисправностей заменить или восстановить поврежденные части перед вводомв эксплуатацию.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ И ЭКСПЛУАТАЦИЯ

ОПИСАНИЕ МАШИНЫ

IR: Моноблочные электронасосы осевого всасывания согласно EN733

Система "back pull out": гидравлическая часть демонтируется без отделения корпуса от трубопровода.

Гидравлические уплотнения: механическое уплотнение с одной пружиной.

Рабочее колесо закрытого типа с несколькими отсеками.

Шариковые подшипники с перманентной консистентной смазкой.

Двигатели: электрические индуктивные двигатели асинхронного типа с внешней вентиляцией (TEFC)

Стандартные напряжения:

- Частота 50Гц: 1~: 220-240В до 4 кВт, 3~: 220-240/380-415В до 4кВт; 380-415V / 660-720В начиная с 5,5 кВт.
- Частота 60Гц: 1~: 220В до 4 кВт; 3~:220/380В и 255-278/440-480 В до 4 кВт; < 380/660 V и 440-480/760-830В

Вариации напряжения: ± 5% Un

Защита против перенагрузок: защита должна поставляться покупателем

Степень защиты (IP) и класс изоляции: обратитесь к шильдику двигателя

ПРИМЕНЕНИЕ

• Перекачивание чистых жидкостей, без содержания твёрдых включений. Жидкости должны быть химически и физически неагрессивными с содержанием частиц твёрдостью и консистенцией ила.

Для перекачивания смеси воды/ гликоля с плотностью и вязкостью отличной от воды необходимо:

- пересчитать характеристики насоса;
- сверить мощность, необходимую двигателю, исходя из характеристик жидкости.

• Нельзя использовать электронасос с жидкостями, чьи химические характеристики отличаются от химических характеристик воды (деминерализованная вода, вода после обработки, пищевые жидкости, опасные жидкости и так далее)

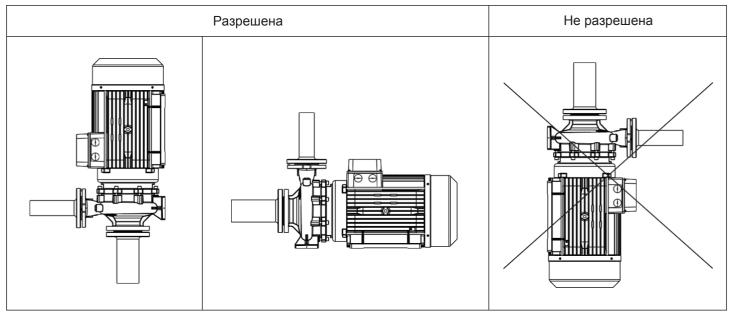
УСЛОВИЯ ЭКСПЛУАТАЦИИ

От -10° до + 40°C
60%
Макс. 1000 м. н.у.м.
-15° / + 1900°C
$Max 30 / P \le 15 \text{ kW}$
Max $15 / 17 \le P \le 22 \text{ kW}$
Max 10 / $26 \le P \le 37 \text{ kW}$
Max 7 / $45 \le P \le 55 \text{ kW}$
Max 4 / $75 \le P \le 90 \text{ kW}$
2'
до 65 грамм/м ³
тах 2 мм
Material: Cast iron
18
<u>g</u> 16
5 12
± 10
12
Q 4
-10 0 65 90 107 120 Water temperature (°C)

НЕДОПУСТИМОЕ ИСПОЛЬЗОВАНИЕ

- Не использовать насос для видов использования, не соответствующих стандарту EN809.
- Не использовать насос в зонах, классифицируемых как взрывоопасные зоны или зоны с содержанием воспламеняющихся жидкостей.
- Не следует использовать насос в местах, предназначенных для купания (бассейнов, водоёмахи т.д.)
- Не использовать насос для жидкостей склонных к кристаллизации илиполимеризации
- Не использовать насос при наличии повышенного давления в системе (напр.,гидроударов).
- Не включать насос в отсутствие жидкости.
- Не эксплуатировать насос в случае неисправностей или аномалий в работе.
- Эксплуатировать насос только в пределах значений расхода и напора, указанных на шильдике.
- Насосы, которые использовались для перекачки токсичных, вредных или иных отличных от питьевой воды жидкостей, нельзя использовать для перекачки воды, предназначенной для потребления человеком.

УСТАНОВКА


Во время всех операций использовать необходимые средства индивидуальной защиты: Защитные очки;

Защитные перчатки для избежания механических, электрических, тепловых и химических рисков.

ПРЕДВАРИТЕЛЬНЫЕ ПРОВЕРКИ

- Проверить, что данные, указанные на шильдике двигателя, в частности, мощность, частота, напряжение, потребляемый ток соответствуют характеристикам электрической сети или генераторатока пользователя. В частности, напряжение сети может иметь отклонение ± 5% от номинального напряжения, указанного на шильдике.
- Проверить, что физико-химические характеристики перекачиваемой жидкости соответствуютданным, предусмотренным в заказе.
- Убедиться, что насос не попадал под воздействие плохих погодных условий.
- Для узлов электронасоса: проверить, что степень защиты и изоляции двигателя, указанные на шильдике, соответствуют условиям в помещении
- Нельзя оставлять изделие под воздействием неблагоприятных погодных условий
- Для узлов электронасоса: в случае эксплуатации при температуре выше +40 °C или на высотеболее 1000 м над уровнем моря обратиться в службу техпомощи.
- Подсоединение к водопроводной сети необходимо выполнять с соблюдением местных и государственных нормативов, действующих в регионе установки насоса.
- Проверить, что расход и напор насоса соответствуют требуемым характеристикам.
- Прежде чем подсоединять трубопроводы к соответствующим патрубкам, необходимо убедиться, что вращающаяся часть насоса вращается свободно, без торможения.

РАСПОЛОЖЕНИЕ УСТАНОВКИ

- Трубопровод должен быть укреплён непосредственно перед насосом и после него.
- Не допускается установка, при которой двигатель находится внизу

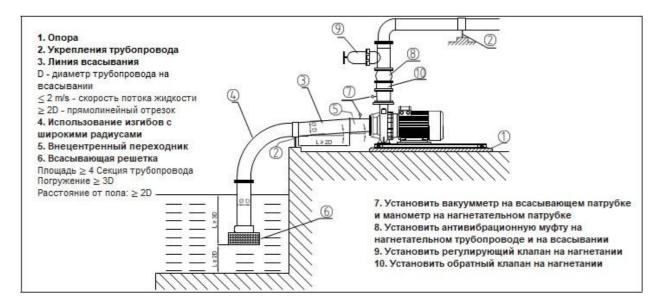
Установка в горизонтальном положении

- Клеммная коробка двигателя всегда должна быть обращена вверх. При необходимости отвинтите болты крепления между двигателем и насосом и поверните двигатель.
- Для двигателей с размером конструкции 160 и больше, двигатель должен снабжаться опорой, чтобыне оказывать давление на насос или трубопровод.

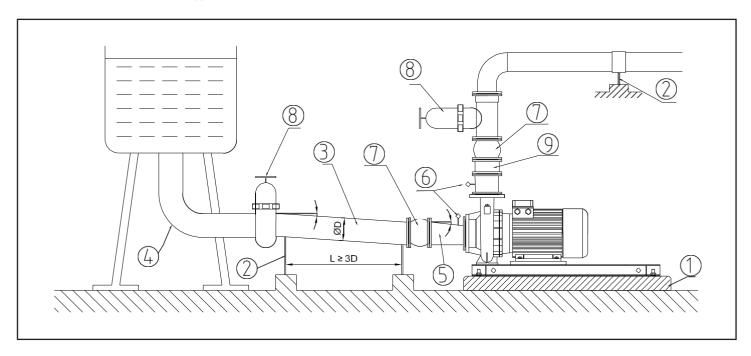
МЕСТО УСТАНОВКИ

- Проверить, что вокруг насоса оставлено достаточное пространство для вентиляции и перемещения в случае работ потехобслуживанию.
- Проверить, что точка и поверхность крепления препятствуют передаче вибраций на окружающиеконструкции. Рекомендуется, чтобы вес фундамента был примерно в пять раз больше веса узла.
- Насос устанавливается как можно ближе к точке всасывания жидкости.
- Надкавитационный напор на входе (NPSH) в системе водоподъема всегда должен

- превышать значение NPSH насоса, во избежание работы в режиме кавитации как для установки под заливом,так и для установки не под заливом.
- Для нагретых жидкостей значение NPSH необходимо пересчитать, чтобы всегда обеспечивалось давление, необходимодля всасывания.


При перекачке токсичных, вредных или слишком горячих жидкостей необходимо принять все возможные меры по предотвращению утечек и/или переливов, могущих причинить ущерб людям, животным, имуществу или окружающей среде.

Для установок с опорной основой:


- Убедиться, что опорная поверхность насоса является достаточно прочной, ровной (так, чтобы все четыре ножки имели опору) и что грузоподъемность соответствует весу.
- Проверить, что бетонные фундаменты обладают достаточной прочностью и соответствуют применимым стандартам.

ПОДСОЕДИНЕНИЕ ТРУБОПРОВОДОВ

Отрицательное давление на всасывании

Положительное давление на всасывании

- Трубопровод всасывания должен иметь идеальную воздухонепроницаемость; его располагают не горизонтально, а с подъемом в направлении насоса. В условиях работы под заливом заборный трубопровод, напротив, должен идти с понижением в направлении насоса. В связи с этим конусные соединители (при наличии) должны быть эксцентрическими и поворотными, чтобы избежать образования пузырей в процессе заливки перед пуском и во время работы.
- Рекомендуется защитить насос путем установки фильтра на трубопроводе всасывания; в особенности в начале эксплуатации от трубопроводов часто откалывается окалина, которая может повредить уплотнения насоса. Фильтр должен иметь сетку размером менее 2 мм и свободное проходное сечение, по крайней мере в три раза превышающее сечение трубопровода, чтобы избежать чрезмерной потеринапора.
- Тем не менее, перед подсоединением насоса рекомендуется очистить трубопроводы, патрубки, клапаны и остальныекомпоненты.
- Для регулировки расхода рекомендуется установить заслонку на трубопровод подачи.
- Для монтажа не под заливом установить донный клапан.
- Диаметр трубопровода подбирают так, чтобы скорость жидкости не превышала 1,5-2 м/с на участке всасывания и 3-3,5 м/с на участке подачи.
- В любом случае, диаметр трубопроводов не должен быть меньше диаметра патрубков насоса. Всасывающий трубопроводдолжен обладать абсолютной герметичностью и при характеристиках по каталогу должен иметь минимальные диаметры, указанные в таблице.

DN [mm]	DN [mm]
Всасывание насоса	Трубопроводы всасывания
50	80
65	100
80	150
100	200
125	250
150	300
200	350
250	400
300	500
350	600

- На участке подачи необходимо установить обратный клапан.
- Предусмотреть отсечной клапан как на участке всасывания, так и на участке подачи.
- После выполнения перечисленных проверок можно подсоединить трубопроводы к насосу.

- Максимальное рабочее давление насоса не должно превышать номинального давления PN насоса.
- Трубопроводы всасывания и подачи не должны передавать на насос / электронасос усилия, связанныес их собственным весом и/или тепловым расширением: это может привести к утечке жидкости или поломке насоса. Поэтому необходимо предусмотреть анкерные крепления для опоры трубопроводов и всоответствующих точках вставить компенсационные муфты.
- Насосы не должны передавать вибрации трубопроводам; для этого необходимо установить антивибрационные муфты на нагнетании и, если возможно, на всасывании.

подсоединение к электрической сети

a L O	Однофазное питание, без конденсатора.
b (Q, Q, Q, L N	Однофазное питание, с конденсатором.

	Однофазное питание 3-4 кВт, с конденсатором.
di d2	Однофазный для питания с двумя возможными напряжениями с конденсатором (d1=низкое напряжение; d2=высокое напряжение)
d3	Трёхфазное питание при двухзначениях напряжения (d3низкое напряжение, d4 высокое напряжение).

Проверить электрическую систему на соответствие стандартам CEI EN 60204-1 и действующим местным нормативам. В частности, проверить:

- наличие сети заземления,
- наличие всеполюсного выключателя / разъединителя, способного отключить все провода питания, для изоляции двигателя в случае неисправностей или мелких ремонтных работ (устройство отключения от сети питания должноиметь категорию превышения напряжения III).
- наличие кнопки аварийного отключения.

Кроме того, необходимо предусмотреть:

- дифференциальный выключатель повышенной чувствительности (0,03 A);
- термозащитное устройство, отрегулированное на максимальный потребляемый ток невыше 5% от номинального тока, время срабатывания менее 30 секунд.

Проверить, что кабель питания имеет надлежащее сечение, не вызывающее падения напряжения более чем на 3% и не приводящее к превышению максимальной рабочей температуры.

ВВОД В ЭКСПЛУАТАЦИЮ, РАБОТА И ОСТАНОВКА

ЗАПОЛНЕНИЕ И ЗАЛИВКА НАСОСА ПЕРЕД ПУСКОМ

Заполнение для монтажа не под заливом (уровень жидкости на участке всасывания ниже уровня насоса):

- Закрыть отсечной клапан на участке подачи
- Открыть отсечной клапан на участке всасывания
- Открыть заглушки сброса воздуха
- Заполнить насос и трубопровод всасывания
- Убедиться, что вышел весь воздух из насоса и трубопровода всасывания
- Закончить заполнение, полностью закрыть заглушку и иглы клапанов сброса

Заполнение для монтажа под заливом (уровень жидкости на участке всасывания выше уровня насоса):

- Закрыть отсечной клапан на участке подачи
- Открыть заглушки сброса воздуха
- Открыть отсечной клапан на участке всасывания
- Подождать, пока вода не начнет выливаться из двух заглушек сброса воздуха
- После того, как вода начнет выходить без воздушных пузырей, закрыть на заглушках сброса воздуха

Операция заполнения перед пуском повторяется после долгого простоя и каждый раз, когда это необходимо.

Проверить правильное состояние вспомогательных устройств: сливные отверстия и отверстия для сброса воздуха должны быть закрыты

ПРОВЕРКА НАПРАВЛЕНИЯ ВРАЩЕНИЯ

Проверить, что направление вращения электронасоса соответствует направлению стрелки на корпусе насоса. Подать и сразу отключить питание, наблюдая за направлением вращения охлаждающего вентилятора двигателя через отверстия картера вентилятора. Если насос вращается в противоположном направлении, инвертировать две фазы в клеммной коробке. Эта проверка повторяется каждый раз после отключения электропитания двигателя.

ВВОД В ЭКСПЛУАТАЦИЮ

Выполнить ополаскивание насоса после установки и до начала эксплуатации в рабочем режиме, той же жидкостью, которую будет перекачивать насос. Повторять эту операцию в случае плановогоили внепланового техобслуживания, предусматривающего извлечение насоса из посадочного места.

- Полностью открыть клапаны на участке всасывания
- При закрытом отсечном клапане на участке подачи: включить питание и подождать, пока насос не достигнет рабочейскорости.
- Медленно открывать клапан на участке подачи до достижения нужного значения расхода.

Проверки в рабочем режиме

Спустя некоторое время, достаточное для достижения рабочего режима, проверить следующее:

- отсутствие утечек жидкости.
- отсутствие вибраций и аномальных шумов.
- отсутствие колебаний расхода.
- температура в помещении не превышает 40°C.
- Температура подшипников, измеряемая на опоре, не должна превышать 90°С.
- ток потребления двигателя не превышает значения, указанного на шильдике.

При наличии хотя бы одного из перечисленных условий следует остановить насос и выявить причину неисправности.

Механическое уплотнение не нуждается в регулировке и/или техобслуживании. Возможна утечка жидкости в первые секунды работы, поскольку происходит приработка самого уплотнения. Если утечка не прекращается, необходимо остановить насос ивыявить причину.

ОСТАНОВКА НАСОСА / ЭЛЕКТРОНАСОСА

- Если не предусмотрен обратный клапан, закрыть заслонку напорного трубопровода.
- При отсутствии донного клапана закрыть заслонку всасывания.
- Отключить электропитание двигателя насоса.
- Если предполагается простой насоса в помещениях с низкой температурой или на период более трех месяцев, следует слить из него воду через специальную заглушку.

КОНСЕРВАЦИЯ

Насос установлен, не работает, но остается в состоянии готовности к пуску: включать насос по крайней мере на 10 минут раз в месяц.

Насос снят с оборудования и помещен на склад: промыть насос и защитить поверхности от коррозии нанесением специальных средств.

ТЕХОБСЛУЖИВАНИЕ

Операции, выполняемые примерно через каждые 1500 часов работы и не реже одного раза в год

Проверить:

- состояние и проследить за температурой подшипников. Температура подшипников, измеряемая на опоре, не должна превышать 90°С;
- уровень вибраций в опорах подшипников;
- состояние уплотнений механические уплотнения не должны иметь утечек
- состояние прокладок: без утечек;
- эксплуатационные характеристики узла (расход/напор);
- данные двигателя (потребляемый ток, данные по дисбалансу напряжений, изоляция, вибрации и так далее)
- состояние всех электрических соединений (клеммная коробка, заземление, шкаф и т.д.); Записать соответствующие данные и сохранить их для сравнения в будущем.

Операции, выполняемые примерно через каждые 3000 часов работы

Проверить:

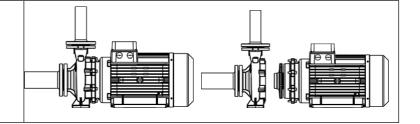
- Состояние колец компенсации износа и защитных втулок вала (при наличии);
- Состояние вала;
- Состояние рабочего колеса.

При необходимости – замена вышеперечисленных компонентов.

Смазка подшипников

Насосы оснащенны подшипниками с постоянной консистентной смазкой

Предусмотрены подшипники с пожизненной смазкой (консистентными средствами) и потому не требующие техобслуживания. Примерные интервалы замены приводятся в таблице:


Макс. скорость вращения	Макс. окружающая температура	Сроки замены смазки	
1/min (rpm)	°C	0	V
1500	40	50.000 h	40.000 h
1800	40	50.000 h	40.000 h
3000	40	40.000 h	30.000 h
3600	40	40.000 h	30.000 h

ДЕМОНТАЖ НАСОСА

Вращательную часть насоса можно извлечь, не отделяякорпус насоса от трубопроводов системы.

Прежде чем приступить к демонтажу:

- отключить двигатель от сети электропитания;
- закрыть все клапаны;
- слить жидкость из насоса через специальныепробки.

ВЫВОД ИЗ ЭКСПЛУАТАЦИИ И УТИЛИЗАЦИЯ

По окончании срока службы насоса или некоторых его частей выполняется утилизация в соответствии с действующими нормативами. Это распространяется также и на содержащуюся в насосе жидкость, с учетом ее классификации как токсичной или вредной, и на упаковочные материалы.

В случае необходимости возврата оборудования поставщику:

- полностью опорожнить насос и тщательно промыть его;
- при необходимости обеспечить полное обеззараживание продукта;
- удалить остатки жидкости или покрытий (смазочные вещества и т.п.);
- защитить насос от коррозии и тщательно упаковать его;
- указать для поставщика все примененные меры безопасности.

НЕИСПРАВНОСТИ: ПРИЧИНЫ И СПОСОБЫ УСТРАНЕНИЯ

НЕИСПРАВНОСТИ	ПРИЧИНЫ	СПОСОБЫ УСТРАНЕНИЯ
Нулевой расход		Проверить направление вращения двигателя. Если оно правильное, проверить правильность установки рабочего колеса в корпусе насоса.
	Насос не заполняется жидкостью	Заполнить жидкостью насос и всасывающийтрубопровод.
	Наличие воздуха в насосе и вканале	Проверить канал на наличие утечек. Выполнитьсброс воздуха из насоса.
		Увеличить глубину погружения участка всасывания относительно уровня жидкости.
	Высота всасывания слишкомвелика	Понизить уровень насоса.
		Проверить фильтры всасывания (если предусмотрены) и рабочее колесо. Устранитьзасоры.
	двигателя.	Проверить скорость вращения двигателя. Длядвигателей, на которые питание поступает отинвертора, проверить частоту питания.
		Проверить, что клапан подачи открыт. Рассчитать напор в системе и сравнить его с напором насоса. Выбрать насос с более высоким значением напора.
Недостаточныйрасход	Причины, перечисленные в предыдущих пунктах.	Учесть от А.1 до А.7
	Работа в режиме кавитации. Недостаточный надкавитационный напор навходе (NPSH).	Повысить значение NPSH системы, уменьшивпотери на участке всасывания или приблизив насос к всасываемой жидкости.
	Утечки через уплотнения.	Заменить уплотнения
	Повреждено рабочее колесо.	Заменить рабочее колесо.
	Кольца компенсации износа повреждены.	Заменить компенсационные кольца.
	Донный клапан слишком мал	Заменить донный клапан.
Слишком низкое давление подачи	Причины, перечисленные в предыдущих пунктах	Учесть: A.1, A.3 ÷ A.7,B.2 ÷ B.4
	Засорение в линии подачи	Устранить засоры
	манометров	Расположить манометр подачи на патрубке подачи, а манометр всасывания – на патрубкевсасывания
Повышенное		Учесть: A.1, B.1 ÷ В.3
потребление	предыдущих пунктах.	,

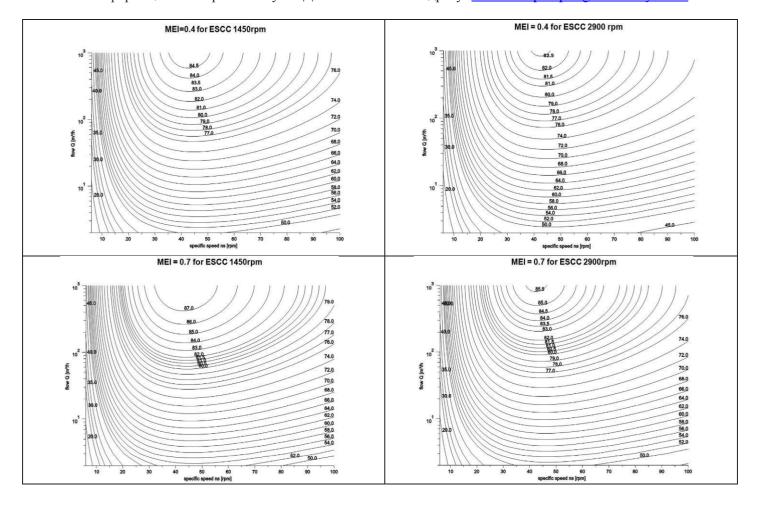
1		
	Износ или механическоезаедание.	Проверить и при необходимости заменить
		уплотнения, подшипники, кольца
		компенсацииизноса.
	Работа за пределами кривой. Напор	С помощью регулировочного клапана на
	ниже минимально допустимого	участкеподачи повысить напор и понизить
	значения.	расход.
	Чрезмерная скорость вращения	Проверить соответствие между скоростями
	двигателя.	двигателя и насоса. Если двигатель
		работает отинвертора, уменьшить частоту.
	Плотность или вязкость жидкости	Уменьшить расход. Обратиться в службу
	выше, чем установленодоговором	техпомощи.
	Неисправности двигателя	См. Документацию на двигатель.
Повышенныйуровень	Причины, перечисленные в	Учесть: A3-A6, B1,B3-B4,D1,D2,D3,
вибрации илишума	предыдущих пунктах.	D5,D6, D7
	Насос, двигатель или основание	Проверить затяжку всех крепежных болтов
	неправильно закреплены	
	Трубопроводы не выровнены илиих	Обеспечить опору трубопроводов,
	вес переносится на насос	проверить ихвыравнивание относительно
		насоса.
	Подшипники повреждены	Заменить подшипники

ЗАПЧАСТИ

Использовать только фирменные запчасти. Для заказа запчастей следует ознакомиться с каталогами или обратиться в службу техпомощи SAER; при этом указать тип двигателя, заводской номер и год изготовления; эти данные указаны на шильдике насоса. Настоящая машина не имеет производственных дефектов.

ИНФОРМАЦИЯ ПО ЭФФЕКТИВНОСТИ

Информация по машине в соответствии с регламентом №547/2012 с указанием способа применения директивы по экологичному проектированию ErP 2009/125/CE


Индекс минимального КПД МЕІ: указан на табличке;

Год изготовления, сведения о производителе, тип оборудования и идентификатор размера: указаны на табличке или вдокументации по заказу;

Гидравлический КПД насоса, характеристические кривые насоса, включая кривую КПД: технические паспорта, каталог;

Полезная информация по демонтажу, переработке и утилизации: руководство по эксплуатации и техобслуживанию. Справочное значение для водяных насосов с наибольшим $K\Pi J$: $MEI \ge 0,70$.

КПД насоса с выточенным рабочим колесом, как правило, ниже по сравнению с насосом, имеющим рабочее колесо на весь диаметр. Токарная обработка рабочего колеса позволяет адаптировать насос к работе с фиксированной рабочей точкой, снижая его энергопотребление. Индекс минимального КПД (MEI) рассчитывается на основе максимального диаметра рабочего колеса. Работа данного водяного насоса с переменными рабочими точками может быть более производительной и экономичной, если он управляется, например, двигателем с переменной скоростью, адаптирующим работу насоса к системе.

СВИДЕТЕЛЬСТВО О СООТВЕТСТВИИ ТРЕБОВАНИЯМ

SAER Elettropompe S.p.A., via Circonvallazione, 22-42016 Guastalla (RE) – Italy, данным заявляет, что моноблочныеэлектронасосы с одним рабочим колесом предназначенные для подъёма чистой воды серии IR соответствуют предписаниям

- Директивы по машиностроению (2006/42/ЕС)
- Директивы ЕС по устройствам, связанным с потреблением энергии (2009/125/ЕС).
- Директивы ЕС по электромагнитной совместимости (2014/30/EU)
- Директивы RoHS (2011/65/EU 2015/863/EU)

Согласно предписанию REACH (CE) п. 1907/2006, SAER обязан уведомлять о некоторых веществах, содержащихся в его изделиях. Когда изделие содержит любые вещества, вызывающие сильное беспокойство (SVHC) в концентрации, превышающей 0,1 % в весе/ весе, SAER должен предоставить достаточную информацию, позволяющую безопасно использовать изделие и включающую, по крайней мере, название самого вещества. В разделе для скачивания документации на нашем сайте www.saerelettropompe.com имеется Декларация соответствия статье 33 Предписания REACH (CE) п. 1907/2006и вещества, вызывающие сильное беспокойство (Substances of Very High Concern, SVHC), содержащая всю необходимую информацию о изделиях SAER, в состав которых может входить свинец в концентрации, превышающей 0,1% в весе/ весе.

При необходимости более подробной информации просьба обращаться в службу технической поддержки SAER.

ГАРАНТИЙНЫЕ УСЛОВИЯ

- 1. Данное руководство может быть обновлено без уведомления клиента.
- 2. Гарантия на насос составляет 5 лет при нормальной эксплуатации. Изнашиваемые детали не включены в гарантию.
- 3. Гарантия на торцевое уплотнение распространяется на первый месяц после отгрузки, так как

- торцевое расходный материал, и его состояние зависит от того, сколько абразива будет в перекачиваемой жидкости. При полном отсутствии абразива назначенный срок эксплуатации торцевого уплотнения два года.
- 4. Пользователь несет ответственность за ущерб, если он самостоятельно разберет насосы в течение гарантийного срока.